
CAP Theorem
CAP is an abbreviation for consistency, availability, and partition tolerance.
The basic idea is that in a distributed system, you can have only two of these
properties, but not all three at once. Let's look at what each property means.

• Consistency
Data access in a distributed database is considered to be consistent when
an update written on one node is immediately available on another node.
Traditional ways to achieve this in relational database systems are
distributed transactions. A write operation is only successful when it's
written to a master and at least one slave, or even all nodes in the system.
Every subsequent read on any node will always return the data written by
the update on all nodes.

• Availability
The system guarantees availability for requests even though one or more
nodes are down. For any database with just one node, this is impossible
to achieve. Even when you add slaves to one master database, there's still
the risk of unavailability when the master goes down. The system can still
return data for reads, but can't accept writes until the master comes back
up. To achieve availability data in a cluster must be replicated to a number
of nodes, and every node must be ready to claim master status at any time,
with the cluster automatically rebalancing the data set.

• Partition Tolerance
Nodes can be physically separated from each other at any given point and
for any length of time. The time they're not able to reach each other,
due to routing problems, network interface troubles, or firewall issues, is
called a network partition. During the partition, all nodes should still be
able to serve both read and write requests. Ideally the system automatically
reconciles updates as soon as every node can reach every other node again.

Given features like distributed transactions it's easy to describe consistency
as the prime property of relational databases. Think about it though, in a
master-slave setup data is usually replicated down to slaves in a lazy manner.
Unless your database supports it (like the semi-synchronous replication in
MySQL 5.5) and you enable it explicitly, there's no guarantee that a write
to the master will be immediately visible on a slave. It can take crucial
milliseconds for the data to show up, and your application needs to be able
to handle that. Unless of course, you've chosen to ignore the potential

CAP Theorem

Riak Handbook | 11

inconsistency, which is fair enough, I'm certainly guilty of having done that
myself in the past.

While Brewer's original description of CAP was more of a conjecture, by
now it's accepted and proven that a distributed database system can only
allow for two of the three properties. For example, it's considered impossible
for a database system to offer both full consistency and 100% availability
at the same time, there will always be trade-offs involved. That is, until
someone finds the universal cure against network partitions, network
latency, and all the other problems computers and networks face.

The CAP Theorem is Not Absolute
While consistency and availability certainly aren't particularly friendly with
each other, they should be considered tuning knobs instead of binary
switches. You can have some of one and some of the other. This approach
has been adopted by quorum-based, distributed databases.

A quorum is the minimum number of parties that need to be successfully
involved in an operation for it to be considered successful as a whole. In
real life it can be compared to votes to make decisions in a democracy,
only applied to distributed systems. By distributed systems I'm referring to
systems that use more than one computer, a node, to get a job done. A job
can be many things, but in our case we're dealing with storing a piece of data.

Every node in a cluster gets a vote, and the number of required votes can
be specified for the system as a whole, and for every operation separately. If
the latter isn't specified, a sensible default is chosen based on a configured
consensus, a path that oftentimes is not successfully applied to a democracy.

In the world of quorum database systems, every piece of data is replicated to a
number of nodes in a cluster. This number is specified using a value called N.
It represents a default for the whole cluster, and can be tuned for every read
and write operation.

Consider a cluster with five nodes and an N value of 3. The N value is the
number of replicas, and you can tune every operation with a quorum, which
determines the number of nodes that are required for that operation to be
successful.

The CAP Theorem is Not Absolute

Riak Handbook | 12

What is Riak?
Riak does one thing, and one thing really well: it ensures data availability
in the face of system or network failure, even when it has only the slightest
chance to still serve a piece of data available to it, even though parts of the
whole dataset might be missing temporarily.

At the very core, Riak is an implementation of Amazon's Dynamo, made by
the smart folks from Basho. The basic way to store data is by specifying a
key and a value for it. Simple as that. A Riak cluster can scale in a linear and
predictable fashion, because adding more nodes increases capacity thanks to
consistent hashing and replication. Throw on top the whole shebang of fault
tolerance, no special nodes, and boom, there's Riak.

A value stored with a key can be anything, Riak is pretty agnostic, but
you're well advised to provide a proper content type for what you're storing.
To no-one's surprise, for any reasonably structured data, using JSON is
recommended.

Riak: Dynamo, And Then Some
There's more to Riak than meets the eye though. Over time, the folks at
Basho added some neat features on top. One of the first things they added
was the ability to have links between objects stored in Riak, to have a simpler
way to navigate an association graph without having to know all the keys
involved.

Another noteworthy feature is MapReduce, which has traditionally been the
preferred way to query data in Riak, based for example, on the attributes of
an object. Riak utilizes JavaScript, though if you're feeling adventurous you
can also use Erlang to write MapReduce functions. As a means of indexing
and querying data, Riak offers full-text search and secondary indexes.

There are two ways I'm referring to Riak. Usually when I say Riak, I'm
talking about the system as a whole. But when I mention Riak KV, I'm
talking about Riak the key-value store (the original Riak if you will). Riak's
feature set has grown beyond just storing keys and values. We're looking
at the basic feature set of Riak KV first, and then we'll look at things that
were added over time, such as MapReduce, full-text search, and secondary
indexes.

What is Riak?

Riak Handbook | 27

MapReduce Basics
A MapReduce query consists of an arbitrary number of phases, each feeding
data into the next. The first part is usually specifying an input, which can be
an entire bucket or a number of keys. You can choose to walk links from
the objects returned from that phase too, and use the results as the basis for a
MapReduce request.

Following that can be any number of map phases, which will usually do any
kind of transformation of the data fed into them from buckets, link walks or a
previous map phase. A map phase will usually fetch attributes of interest and
transform them into a format that is either interesting to the user, or that will
be used and aggregated by a following reduce phase.

It can also transform these attributes into something else, like only fetch the
year and month from a stored date/time attribute. A map phase is called for
every object returned by the previous phase, and is expected to return a list of
items, even if it contains only one. If a map phase is supposed to be chained
with a subsequent map phase, it's expected to return a list of bucket and key
pairs.

Finally, any number of reduce phases can aggregate the data handed to them
by the map phases in any way, sort the results, group by an attribute, or
calculate maximum and minimum values.

Mapping Tweet Attributes
Now it's time to sprinkle some MapReduce on our tweet collection. Let's
start by running a simple map function. A MapReduce request sent to Riak
using the HTTP API is nothing more than a JSON document specifying
the inputs and the phases to be executed. For JavaScript functions, you can
simply include their stringified source in the document, which makes it a
bit tedious to work with. But as you'll see in a moment, riak-js handles this
much more JavaScript-like.

Let's build a map function first. Say, we're interested in tweets that contain
the word "love", because let's be honest, everyone loves Justin Bieber.
Riak.mapValuesJson(), used in the code snippet below, is a built-in
function that extracts and parses the value of serialized JSON object into
JavaScript objects.

varvar loveTweets == functionfunction(value) {
trytry {
varvar doc == Riak.mapValuesJson(value)[0];

MapReduce Basics

Riak Handbook | 41

ifif (doc.tweet.match(/love/i)) {
returnreturn [doc];

} elseelse {
returnreturn [];

}
} catchcatch (error) {
returnreturn [];

}
}

Before we the look at the raw JSON that's sent to Riak, let's run this in the
Node console, feeding it all the tweets in the tweets bucket.

riak.add('tweets').map(loveTweets).run()

Imagine a long list of tweets mentioning Justin Bieber scrolling by, or try it
out yourself. The number of tweets you'll get will vary from day to day, but
given that so many people are in love with Justin, I don't have the slightest
doubt that you'll see a result here.

Using Reduce to Count Tweets
What if we want to count the tweets using the output we got from the map
function above? Why, we write a reduce function of course.

Reduce functions will usually get a list of values from the map function, not
just one value. So to aggregate the data in that list, you iterate over it and
well, reduce it. Thankfully JavaScript has got us covered here. Let's whip out
the code real quick.

varvar countTweets == functionfunction(values) {
returnreturn [values.reduce(functionfunction(total, value) {
returnreturn total ++ 1;

}, 0)];
}

Looks simple enough, right? We iterate over the list of values using
JavaScript's built-in reduce function and keep a counter for all the results fed
to the function from the map phase.

Now we can run this in our console.

riak.add('tweets').map(loveTweets).
reduce(countTweets).run()

// Output: [8]

Using Reduce to Count Tweets

Riak Handbook | 42

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/Reduce

Riak Secondary Indexes
Secondary indexes (or short: 2i) are a very recent addition to Riak. They
offer a much simpler way to do reverse lookups on data stored in Riak than
Riak Search. Instead of having Riak analyze and tokenize data in documents
(JSON, XML, text), 2i relies on the application to provide the indexing data
as key-value pairs when storing data. It doesn't do any tokenization either,
and doesn't allow things like partial matches like full-text search does, so it's
much less computationally expensive.

Computation is instead pushed into the application layer, which basically
tags objects stored in Riak with the data it wants to run queries on. Riak 2i
can index integers and binary values like strings, and everything is stored
in lowercase. So instead of indexing an object you add some metadata to
it which Riak can then use to do index lookups. Like Riak Search, 2i only
returns keys for you to use. It doesn't do any object lookups, but you can feed
the results into MapReduce to do so in the same step.

Querying is kept rather simple too, allowing only full matches and ranges.
Don't worry, the folks at Basho are continuously improving on that front,
but it's a good start for a more lightweight alternative to Riak Search.

To use Riak 2i, you have to enable the LevelDB storage backend. You can
find details on how to do that in the section on storage backends.

Indexing Data with 2i

Index data is stored alongside the objects they're associated with, much like
the metadata (links and such) mentioned earlier. Just like metadata, you
provide indexing data as additional headers, prefixed with X-Riak-Index.
Note that the header names are case-insensitive, so any case of X-Riak-Index
will do.

We'll start by indexing a tweet's username, working off the initial indexing
examples in this chapter, in the end adapting our Twitter indexer to use
secondary indexes.

Indexes need to be typed, and this is done by adding a suffix to the name
identifying the type, currently _bin and _int are supported. Indexing a
string field means it's binary for Riak 2i, so both the username and the date
get a _bin field name suffix. They end up being sent to Riak as X-Riak-
Index-username_bin and X-Riak-Index-tweeted_at_bin respectively.

Riak Secondary Indexes

Riak Handbook | 84

riak-js comes with some preliminary support for 2i, but it's more than good
enough for our purposes. Secondary indexes are just really simple to build
and use. Just add a new index attribute to the meta data.

tweet == {
user:: 'roidrage',
tweet:: 'Using @riakjs for the examples in the Riak chapter!',
tweeted_at:: newnew Date(2011, 1, 26, 8, 0).toISOString()

}

riak.save('tweets', '41399579391950848', tweet, {index:: {
username:: 'roidrage',
tweeted_at:: newnew Date(2011, 1, 26, 8, 0).toISOString()

}})

The only change we've done is to add some metadata for indexes. riak-js will
automatically resolve the field names to have the proper datatype suffixes, so
the code looks a bit cleaner than the underlying HTTP request, which we'll
look at anyway.

$ curl -X PUT localhost:8098/riak/tweets/41399579391950848 \
-H 'Content-Type: application/json' \
-H 'X-Riak-Index-username_bin: roidrage' \
-H 'X-Riak-Index-tweeted_at_bin: 2011-02-26T08:00:00.000Z' \
-d @-

{{
"username":"roidrage",
"tweet":"Using @riakjs for the examples in the Riak chapter!",
"tweeted_at":"2011-02-26T08:00:00.000Z"

}}

There are special field names at your disposal too, namely the field $key,
which automatically indexes the key of the Riak object. Saves you the
trouble of specifying it twice. Riak automatically indexes the key as a binary
field for your convenience, so be sure to avoid using the field $key elsewhere.
It's also worth mentioning that the $key index is always at your disposal,
whether you index other things for objects or not. That gives you a nice
advantage over key filters when you query Riak for ranges of keys.

That's pretty much all you need to know to start indexing data. There's no
precondition, just go for it. It really is the simplest way to get started building
a query system around data stored in Riak.

Riak Secondary Indexes

Riak Handbook | 85

Using Pre- and Post-Commit Hooks
There are scenarios where you want to run something before or after writing
data to Riak. It could be as simple as validating data written, for instance to
check if the JSON conforms to a well-known schema, or if it's written in the
expected serialization format. If the validation fails the code can fail the write,
returning an error to the client. The code could also modify the object before
it's written, for example to add timestamps or to add audit information.

Another use case we already came across with Riak Search is to update data
in a secondary data source with the data just written. Riak Search updates its
search index before the data is written to Riak, failing the write if indexing
caused an error. That way your application knows right away if there are
problems with either the data or your Riak setup.

This feature is called a pre-commit hook, and it's run before Riak sends the
object out to the replicas, allowing the hook to control if the write should
succeed or if it should fail. A pre-commit hook can be written in JavaScript
or Erlang.

A post-commit hook, on the other hand, is run after the write operation is
done, and the node that coordinates the request has already sent the reply to
the client. What you do in a post-commit hook has no effect on the request as
a whole. You can modify the data but you'd have to explicitly write it back to
Riak again. Post-commit hooks can be used to update external data sources,
for example a search index, to trigger notifications in a messaging system, or
to add metrics about the data to a system like Graphite, Ganglia, or Munin.
Post-commit hooks can only be written in Erlang.

Let's walk through some examples.

Validating Data

The simplest thing that could possibly work is a JavaScript function that
checks if the data written is valid JSON. To validate, the function tries to
parse the object from JSON into a JavaScript structure. Should parsing the
object fail, the function returns a hash with the key fail and a message to the
client. Alternatively, the function could just return the string "fail" to fail
the write.

If parsing succeeds, it returns the unmodified object. To make the code
easier to deploy later, it's wrapped into a Precommit namespace and assigned
to a function variable validateJson, so we can call the method as
Precommit.validateJson(object).

Using Pre- and Post-Commit Hooks

Riak Handbook | 92

varvar Precommit == {
validateJson:: functionfunction(object) {
varvar value == object.values[0].data;
trytry {
JSON.parse(value);
returnreturn object;

} catchcatch(error) {
returnreturn {"fail":: "Parsing the object failed: " ++ error};

}
}

}

There is a problem with this code. Pre-commit hooks are not just called
for writes and updates, they're also called for delete operations. When a
client deletes object, the pre-commit hook will waste precious time trying
to decode the object. Riak sets the header X-Riak-Deleted on the object's
metadata when it's being deleted.

To work around this particular case, we'll extend the code to exit early and
return the object when the header is set.

Precommit == {
validateJson:: functionfunction(object) {
varvar value == object.values[0];
ifif (value['metadata']['X-Riak-Deleted']) {
returnreturn object;

}

trytry {
JSON.parse(value.data);
returnreturn object;

} catchcatch(error) {
returnreturn {"fail":: "Parsing the object failed: " ++ error}

}
}

}

Unlike MapReduce, JavaScript code for pre-commit hooks needs to be
deployed on the Riak nodes. Further down below you'll find a section
dedicated to deploying custom JavaScript.

Enabling Pre-Commit Hooks

Given you've deployed the code, we can now tell Riak to use the pre-
commit function for a bucket. Like so many other settings in Riak, commit

Using Pre- and Post-Commit Hooks

Riak Handbook | 93

have a different lineage. You'll just keep creating more and more siblings if
they're not reconciled.

Sibling explosion can have the consequence of increased read latency. For
every read to the object, Riak has to load more and more data to fetch all the
siblings. One piece of data only 10 KB in size is no big deal, but a hundred
of it suddenly turn the whole object into 1 MB of data. If all you do is write
smaller pieces of data, increased read latency is a good (though only one)
indicator that your code creates too many siblings.

Building a Timeline with Riak

Now, you may remember that we wanted to build a timeline, for the tweets
we're collecting. Now that we went through the details of modeling data
structures for Riak, we have all the information we need to get started. The
timeline is nothing more than a list of changes. Every tweet in it is atomic,
there are no duplicates, and duplicate writes of the same tweet are easy to
filter out thanks to their identifier.

This idea has been made popular by Yammer. They built a notification
service on top of Riak that follows a similar way of modeling the data. In fact,
they led the way of how to build time series data structures on top of Riak.
Hat tip to you once again, Coda Hale. You should make sure to watch their
talk at a Riak meetup.

A timeline keeps a list of unique items for a single user, sorted by time. For
our purposes, it represents a Twitter user's timeline, based on the tweets that
matched the search. The timeline is stored in a Riak object per user and keeps
the whole timeline as a list, referencing the tweets. Here's an example.

{
"entries":: [
"1231458592827",
"1203121288821",
"1192111486023",
"1171436045885"

]
}

The simplest timeline that could possibly work. To make it more efficient
we could make it include the entire tweet. Here's a slightly more complex
version.

Choosing the Right Data Structures

Riak Handbook | 125

http://basho.com/blog/technical/2011/03/28/Riak-and-Scala-at-Yammer/
http://basho.com/blog/technical/2011/03/28/Riak-and-Scala-at-Yammer/

{
"entries":: [{
"id":: "1231458592827",
"username":: "roidrage",
"tweet":: "Writing is hard."

}, {
"id":: "1203121288821",
"username":: "roidrage",
"tweet":: "Finishing up those last chapters."

}, {
"id":: "1192111486023",
"username":: "roidrage",
"tweet":: "Only two more chapters to go."

}, {
"id":: "1171436045885",
"username":: "roidrage",
"tweet":: "Almost done with the part on Riak."

}]
}

You can keep adding attributes as you see fit, but it pays to keep the data
in the timeline simple. Assuming JSON is the serialization format of choice,
every new tweet added to the list adds up to 300 or 400 bytes. With 100
tweets, the Riak object is about 40 KB in size, with 500, it already clocks in
at 200 KB. That's not a massive size, but if it keeps growing indefinitely, the
Riak object grows bigger and bigger.

Both ways of modeling the timeline share the same advantage. You can
assume that the id attribute is already respecting time, as that's what
Twitter's Snowflake tool does. Snowflake generates unique, incrementing
numbers to identify tweets. One part of the generated number is derived
from a timestamp. Ordering the entries by that attribute will ensure that
they're sorted by time.

Here's the code to handle the timeline, first the part that adds new entries,
prepending them to an existing list of entries.

varvar tweet == {
id:: '41399579391950848',
user:: 'roidrage',
tweet:: 'Using riakjs for the examples in the Riak chapter!',
tweeted_at:: newnew Date(2011, 1, 26, 8, 0)

};

riak.get("timelines", "roidrage",
functionfunction(e, timeline, meta) {

Choosing the Right Data Structures

Riak Handbook | 126

ifif (e &&&& e.notFound) {
timeline == {entries:: []};

}
timeline.entries.unshift(tweet.id);
riak.save("timelines", "roidrage", timeline, meta);

}
});

If no timeline exists, we create a new one and then add the tweet to the
beginning of the list. Next up, we'll add the code that reconciles two
diverged timelines.

functionfunction reconcile(objects) {
varvar changes == [];
forfor (varvar i inin objects) {
changes.concat(objects[i].data.entries);

}
changes.reduce(functionfunction(acc, current) {
ifif (acc.indexOf(current) ==== --1) {
acc.push(current);

}
returnreturn acc;

}, []);
returnreturn changes.sort().reverse();

}

First, all the changes are collected in one list. The list is then deduplicated,
having only single items in it. Lastly, it's sorted and the list reversed, so that
the items are in descending order, with newest tweets first.

All that's left to do is update the code saving timeline objects to reconcile
potential siblings before storing it back.

riak.get("timelines", "roidrage",
functionfunction(e, timeline, meta) {
ifif (e &&&& e.notFound) {
timeline == {entries:: []};

} elseelse ifif (meta.statusCode ==== 300) {
varvar entries == reconcileConflicts(timeline);
timeline == timeline[0];
timeline.entries == entries;

}
timeline.entries.unshift(tweet.id);
ifif (!!meta.vclock) {
meta == {}

}
riak.save("timelines", "roidrage", timeline, meta)

Choosing the Right Data Structures

Riak Handbook | 127

